Sensitive Determination of SARS-COV-2 and the Anti-hepatitis C Virus Agent Velpatasvir Enabled by Novel Metal-Organic Frameworks

ACS Omega. 2021 Sep 30;6(40):26791-26798. doi: 10.1021/acsomega.1c04525. eCollection 2021 Oct 12.

Abstract

Herein, we report on the electrochemical determination of velpatasvir (VLP) as the main constituent of Epclusa, a SARS-COV-2 and anti-hepatitis C virus (HCV) agent, using a novel metal-organic framework (MOF). The NH2-MIL-53(Al) MOF was successfully modified with 5-bromo-salicylaldehyde to synthesize 5-BSA=N-MIL-53(Al) MOF. The synthesized MOF has been characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The modified MOF showed higher electrochemical activity and response than the bare NH2-MIL-53(Al) MOF. Compared to the bare carbon paste electrode (CPE), the 5-BSA=N-MIL-53(Al)/CPE platform was shown to enhance the electrochemical oxidation and detection of the anti-SARS-COV-2 and anti-HCV agent. Under optimized conditions, the 5-BSA=N-MIL-53(Al)/CPE platform showed a linear range of 1.11 × 10-6 to 1.11 × 10-7 and 1.11 × 10-7 to 25.97 × 10-6 M Britton-Robinson buffer (pH 7) with a detection limit and limit of quantification of 8.776 × 10-9 and 2.924 × 10-8 M, respectively. Repeatability, storage stability, and reproducibility in addition to selectivity studies and interference studies were conducted to illustrate the superiority of the electrode material. The study also included a highly accurate platform for the determination of VLP concentrations in both urine and plasma samples with reasonable recovery.