Excluded area of superellipse sector particles

Phys Rev E. 2021 Sep;104(3-1):034904. doi: 10.1103/PhysRevE.104.034904.

Abstract

Superellipse sector particles (SeSPs) are segments of superelliptical curves that form a tunable set of hard-particle shapes for granular and colloidal systems. SeSPs allow for continuous parametrization of corner sharpness, aspect ratio, and particle curvature; rods, circles, rectangles, and staples are examples of shapes SeSPs can model. We investigate the space of allowable (nonoverlapping) configurations of two SeSPs, which depends on both the center-of-mass separation and relative orientation. Radial correlation plots of the allowed configurations reveal circular regions centered at each of the particle's two end points that indicate configurations of mutually entangled particle interactions. Simultaneous entanglement with both end points is geometrically impossible; the overlap of these two regions therefore represents an excluded area in which no particles can be placed regardless of orientation. The regions' distinct boundaries indicate a translational frustration with implications for the dynamics of particle rearrangements (e.g., under shear). Representing translational and rotational degrees of freedom as a hypervolume, we find a topological change that suggests geometric frustration arises from a phase transition in this space. The excluded area is a straightforward integration over excluded states; for arbitrary relative orientation this decreases sigmoidally with increasing opening aperture, with sharper SeSP corners resulting in a sharper decrease. Together, this work offers a path towards a unified theory for particle shape control of bulk material properties.