Removing independent noise in systems neuroscience data using DeepInterpolation

Nat Methods. 2021 Nov;18(11):1401-1408. doi: 10.1038/s41592-021-01285-2. Epub 2021 Oct 14.

Abstract

Progress in many scientific disciplines is hindered by the presence of independent noise. Technologies for measuring neural activity (calcium imaging, extracellular electrophysiology and functional magnetic resonance imaging (fMRI)) operate in domains in which independent noise (shot noise and/or thermal noise) can overwhelm physiological signals. Here, we introduce DeepInterpolation, a general-purpose denoising algorithm that trains a spatiotemporal nonlinear interpolation model using only raw noisy samples. Applying DeepInterpolation to two-photon calcium imaging data yielded up to six times more neuronal segments than those computed from raw data with a 15-fold increase in the single-pixel signal-to-noise ratio (SNR), uncovering single-trial network dynamics that were previously obscured by noise. Extracellular electrophysiology recordings processed with DeepInterpolation yielded 25% more high-quality spiking units than those computed from raw data, while DeepInterpolation produced a 1.6-fold increase in the SNR of individual voxels in fMRI datasets. Denoising was attained without sacrificing spatial or temporal resolution and without access to ground truth training data. We anticipate that DeepInterpolation will provide similar benefits in other domains in which independent noise contaminates spatiotemporally structured datasets.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials*
  • Algorithms*
  • Animals
  • Calcium / metabolism*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods
  • Mice
  • Microscopy, Fluorescence, Multiphoton / methods
  • Multimodal Imaging / methods
  • Neuroimaging / methods*
  • Neurons / cytology
  • Neurons / physiology*
  • Signal-To-Noise Ratio*

Substances

  • Calcium