Intraoperative Low-Dose Dexmedetomidine Administration Associated with Reduced Hepatic Ischemia-Reperfusion Injury in Pediatric Deceased Liver Transplantation: A Retrospective Cohort Study

Ann Transplant. 2021 Oct 15:26:e933354. doi: 10.12659/AOT.933354.

Abstract

BACKGROUND Dexmedetomidine (DEX) attenuates hepatic ischemia-reperfusion injury (HIRI) in adult liver transplantation (LT), but its effects on postoperative liver graft function in pediatric LT remain unclear. We sought to investigate whether intraoperative DEX administration was associated with improved liver graft function in pediatric LT recipients. It was hypothesized that DEX administration was associated with reduced HIRI and improved liver graft function. MATERIAL AND METHODS From November 2015 to May 2020, 54 deceased pediatric LT recipients were categorized into a control group and a DEX group. Intraoperatively, the DEX group received an additional infusion of DEX at 0.4 µg/kg/h from incision to the end of the operation in comparison with the control group. Preoperative, intraoperative, and postoperative data were reviewed. Postoperative liver enzyme levels and HIRI severity were assessed and compared. Independent risk factors for HIRI were determined by multivariate logistic regression analysis using a stepwise forward conditional method. RESULTS We enrolled 28 and 26 patients in the DEX and control groups, respectively. Patients in the DEX group exhibited a reduced incidence of moderate-to-severe HIRI (88.5% vs 60.7%, P=0.020) and decreased level of serum alanine aminotransferase (median [interquartile range]: 407 [230-826] vs 714 [527-1492] IU/L, P=0.048) compared with the controls. Binary logistic analysis revealed that longer cold ischemia time (odds ratio [OR]=1.006; 95% confidence interval [CI]=1.000-1.013; P=0.044) and intraoperative DEX use (OR=0.198; 95% CI=0.045-0.878; P=0.033) were independent predictors for moderate-to-severe HIRI. CONCLUSIONS Intraoperative low-dose DEX administration was associated with a lower incidence of moderate-to-severe HIRI in pediatric deceased LT. However, further studies are needed to confirm our results and elucidate the underlying mechanisms.

MeSH terms

  • Child
  • Dexmedetomidine* / therapeutic use
  • Humans
  • Liver
  • Liver Transplantation*
  • Reperfusion Injury* / etiology
  • Reperfusion Injury* / prevention & control
  • Retrospective Studies

Substances

  • Dexmedetomidine