Lost in Condensation: Poly-, Cyclo-, and Ultraphosphates

Acc Chem Res. 2021 Nov 2;54(21):4036-4050. doi: 10.1021/acs.accounts.1c00370. Epub 2021 Oct 14.

Abstract

Much like linear, branched, and cyclic alkanes, condensed phosphates exist as linear, branched, and cyclic structures. Inasmuch as alkanes are the cornerstone of organic chemistry, generating an inexplorably large chemical space, a comparable richness in structures can be expected for condensed phosphates, as also for them the concepts of isomerism apply. Little of their chemical space has been charted, and only a few different synthesis methods are available to construct isomers of condensed phosphates. Here, we will discuss the application of phosphoramidites with one, two, or three P-N bonds that can be substituted selectively to access different condensed phosphates in a highly controllable manner. Work directed toward the further exploration of this chemical space will contribute to our understanding of the fundamental chemistry of phosphates.In biology, condensed phosphates play important roles in the form of inorganic representatives, such as pyrophosphate, polyphosphate, and cyclophosphate, and also in conjugation with organic molecules, such as esters and amidates. Phosphorus is one of the six biogenic elements; the omnipresence of phosphates in biology points toward their critical involvement in prebiotic chemistry and the emergence of life itself. Indeed, it is hard to imagine any life without phosphate. It is therefore desirable to achieve through synthesis a better understanding of the chemistry of the condensed phosphates to further explore their biology.There is a rich but underexplored chemistry of the family of condensed phosphates per se, which is further diversified by their conjugation to important biomolecules and metabolites. For example, proteins may be polyphosphorylated on lysins, a very recent addition to posttranslational modifications. Adenosine triphosphate, as a representative of the small molecules, on the other hand, is well known as the universal cellular energy currency. In this Account, we will describe our motivations and our approaches to construct, modify, and synthetically apply different representatives of the condensed phosphates. We also describe the generation of hybrids composed of cyclic and linear structures of different oxidation states and develop them into reagents of great utility. A pertinent example is provided in the step-economic synthesis of the magic spot nucleotides (p)ppGpp. Finally, we provide an overview of 31P NMR data collected over the years in our laboratories, helping as a waymarker for not getting lost in condensation.

Publication types

  • Research Support, Non-U.S. Gov't