On site production of [18F]PSMA-1007 using different [18F]fluoride activities: practical, technical and economical impact

EJNMMI Radiopharm Chem. 2021 Oct 13;6(1):36. doi: 10.1186/s41181-021-00150-z.

Abstract

Background: Prostate-specific membrane antigen is overexpressed in prostate cancer and it is considered a good target for positron emission tomography/computed tomography imaging of primary cancer and recurrent/metastatic disease, as well as for radioligand therapy. Different PSMA-analogues labeled with [68Ga]gallium have been investigated, showing excellent imaging properties; however, only small amounts can be produced for each radiolabeling. Recently, a [18F]fluoride labeled PSMA-inhibitor, [18F]PSMA-1007, has been introduced, and it has ensured large-scale productions, overcoming this limitation of [68Ga]PSMAs. In this study, PSMA-1007 has been labeled with low (A), medium (B) and high (C) starting activities of [18F]fluoride, in order to verify if radiochemical yield, radiochemical purity and stability of [18F]PSMA-1007 were affected. These parameters have been measured in sixty-five consecutive batches. In addition, the estimation of [18F]PSMA-1007 production costs is provided.

Results: The radiochemical yield for low and medium activities of [18F]fluoride was 52%, while for the high one it decreased to 40%. The radiochemical purity was 99% for all three activities. [18F]PSMA-1007 did not show radiolysis up to 8 h after the end of synthesis, confirming that the radiopharmaceutical is stable and suitable to perform diagnostic studies in humans for a long period of time after the end of radiolabeling. Furthermore, radiochemical stability was demonstrated in fetal bovine serum at 4 °C and 37 °C for 120'.

Conclusions: A starting activity of [18F]fluoride of 90 GBq (B) seems to be the best option enabling a final amount of about of 50 GBq of [18F]PSMA-1007, which is promising as it allows to: (a) perform a large number of scans, and/or (b) supply the radiopharmaceutical to any peripheral diagnostic centers in need.

Keywords: Radiochemical purity (RCP); Radiochemical yield (RCY); Stability; Time of beam; [18F]PSMA-1007; [18F]fluoride.