Evidence for the Effectiveness of Feedback from Wearable Inertial Sensors during Work-Related Activities: A Scoping Review

Sensors (Basel). 2021 Sep 24;21(19):6377. doi: 10.3390/s21196377.

Abstract

Background: Wearable inertial sensor technology (WIST) systems provide feedback, aiming to modify aberrant postures and movements. The literature on the effects of feedback from WIST during work or work-related activities has not been previously summarised. This review examines the effectiveness of feedback on upper body kinematics during work or work-related activities, along with the wearability and a quantification of the kinematics of the related device. Methods: The Cinahl, Cochrane, Embase, Medline, Scopus, Sportdiscus and Google Scholar databases were searched, including reports from January 2005 to July 2021. The included studies were summarised descriptively and the evidence was assessed. Results: Fourteen included studies demonstrated a 'limited' level of evidence supporting posture and/or movement behaviour improvements using WIST feedback, with no improvements in pain. One study assessed wearability and another two investigated comfort. Studies used tri-axial accelerometers or IMU integration (n = 5 studies). Visual and/or vibrotactile feedback was mostly used. Most studies had a risk of bias, lacked detail for methodological reproducibility and displayed inconsistent reporting of sensor technology, with validation provided only in one study. Thus, we have proposed a minimum 'Technology and Design Checklist' for reporting. Conclusions: Our findings suggest that WIST may improve posture, though not pain; however, the quality of the studies limits the strength of this conclusion. Wearability evaluations are needed for the translation of WIST outcomes. Minimum reporting standards for WIST should be followed to ensure methodological reproducibility.

Keywords: feedback; industrial/workplace ergonomics; posture; wearable devices.

Publication types

  • Review

MeSH terms

  • Feedback
  • Movement
  • Posture*
  • Reproducibility of Results
  • Wearable Electronic Devices*