Borosilicate Glass-Ceramics Containing Zirconolite and Powellite for RE- and Mo-Rich Nuclear Waste Immobilization

Materials (Basel). 2021 Oct 1;14(19):5747. doi: 10.3390/ma14195747.

Abstract

In order to increase the loading of rare earth- and molybdenum-rich high-level waste in the waste forms, zirconolite- and powellite-based multi-phase borosilicate glass-ceramics were synthesized via an in-situ heat treatment method. The effects of the CTZ (CaO, TiO2 and ZrO2) content on the crystallization, microstructure and aqueous durability of the multi-phase borosilicate glass-ceramics were studied. The results indicate that the increase of CTZ content can promote crystallization. The glass-ceramics presented even structures when the CTZ content was ≥ 40 wt%. For the glass-ceramic with 40 wt% CTZ, only zirconolite and powellite crystals were detected and powellite crystals were mainly distributed around zirconolite, whereas for the glass-ceramics with 50 wt% CTZ, perovskite was detected. Furthermore, the leaching rates of Na, Ca, Mo and Nd were in the ×10-3, ×10-4, ×10-3 and ×10-5 g·m-2·d·-1 orders of magnitude on the 28th leaching day, respectively.

Keywords: in situ heat treatment; multi-phase glass-ceramics; powellite; zirconolite.