Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations

Int J Mol Sci. 2021 Oct 2;22(19):10693. doi: 10.3390/ijms221910693.

Abstract

Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.

Keywords: ADMET; COVID-19; docking study; drug repurposing; dynamic simulation; patchouli alcohol; tomatidine.

MeSH terms

  • Antiviral Agents / pharmacology
  • COVID-19 / virology
  • COVID-19 Drug Treatment
  • Coronavirus 3C Proteases / antagonists & inhibitors*
  • Coronavirus 3C Proteases / metabolism
  • Coronavirus Papain-Like Proteases / antagonists & inhibitors*
  • Coronavirus Papain-Like Proteases / metabolism
  • Endoribonucleases / antagonists & inhibitors*
  • Endoribonucleases / metabolism
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • SARS-CoV-2 / drug effects
  • SARS-CoV-2 / enzymology*
  • Sesquiterpenes / pharmacology*
  • Tomatine / analogs & derivatives*
  • Tomatine / pharmacology
  • Viral Nonstructural Proteins / antagonists & inhibitors*
  • Viral Nonstructural Proteins / metabolism

Substances

  • Antiviral Agents
  • Enzyme Inhibitors
  • Sesquiterpenes
  • Viral Nonstructural Proteins
  • tomatidine
  • Tomatine
  • Endoribonucleases
  • nidoviral uridylate-specific endoribonuclease
  • 3C-like proteinase, SARS-CoV-2
  • Coronavirus Papain-Like Proteases
  • papain-like protease, SARS-CoV-2
  • Coronavirus 3C Proteases
  • patchouli alcohol