Complete and Resilient Documentation for Operational Medical Environments Leveraging Mobile Hands-free Technology in a Systems Approach: Experimental Study

JMIR Mhealth Uhealth. 2021 Oct 12;9(10):e32301. doi: 10.2196/32301.

Abstract

Background: Prehospitalization documentation is a challenging task and prone to loss of information, as paramedics operate under disruptive environments requiring their constant attention to the patients.

Objective: The aim of this study is to develop a mobile platform for hands-free prehospitalization documentation to assist first responders in operational medical environments by aggregating all existing solutions for noise resiliency and domain adaptation.

Methods: The platform was built to extract meaningful medical information from the real-time audio streaming at the point of injury and transmit complete documentation to a field hospital prior to patient arrival. To this end, the state-of-the-art automatic speech recognition (ASR) solutions with the following modular improvements were thoroughly explored: noise-resilient ASR, multi-style training, customized lexicon, and speech enhancement. The development of the platform was strictly guided by qualitative research and simulation-based evaluation to address the relevant challenges through progressive improvements at every process step of the end-to-end solution. The primary performance metrics included medical word error rate (WER) in machine-transcribed text output and an F1 score calculated by comparing the autogenerated documentation to manual documentation by physicians.

Results: The total number of 15,139 individual words necessary for completing the documentation were identified from all conversations that occurred during the physician-supervised simulation drills. The baseline model presented a suboptimal performance with a WER of 69.85% and an F1 score of 0.611. The noise-resilient ASR, multi-style training, and customized lexicon improved the overall performance; the finalized platform achieved a medical WER of 33.3% and an F1 score of 0.81 when compared to manual documentation. The speech enhancement degraded performance with medical WER increased from 33.3% to 46.33% and the corresponding F1 score decreased from 0.81 to 0.78. All changes in performance were statistically significant (P<.001).

Conclusions: This study presented a fully functional mobile platform for hands-free prehospitalization documentation in operational medical environments and lessons learned from its implementation.

Keywords: attention; audio; challenge; development; disruption; documentation; emergency medical services; medical information; military medicine; natural language processing; paramedic; prehospital documentation; qualitative; simulation; speech recognition; speech recognition software.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Documentation
  • Humans
  • Speech Recognition Software*
  • Speech*
  • Technology