Colloidal Two-Dimensional Metal Chalcogenides: Realization and Application of the Structural Anisotropy

Acc Chem Res. 2021 Oct 19;54(20):3792-3803. doi: 10.1021/acs.accounts.1c00209. Epub 2021 Oct 8.

Abstract

ConspectusDue to the spatial confinement, two-dimensional metal chalcogenides display an extraordinary optical response and carrier transport ability. Solution-based synthesis techniques such as colloidal hot injection and ion exchange provide a cost-effective way to fabricate such low-dimensional semiconducting nanocrystals. Over the years, developments in colloidal chemistry made it possible to synthesize various kinds of ultrathin colloidal nanoplatelets, including wurtzite- and zinc blende-type CdSe, rock salt PbS, black phosphorus-like SnX (X = S or Se), hexagonal copper sulfides, selenides, and even transition metal dichalcogenides like MoS2. By altering experimental conditions and applying capping ligands with specific functional groups, it is possible to accurately tune the dimensionality, geometry, and consequently the optical properties of these colloidal metal chalcogenide crystals. Here, we review recent progress in the syntheses of two-dimensional colloidal metal chalcogenides (CMCs) and property characterizations based on optical spectroscopy or device-related measurements. The discoveries shine a light on their huge prospect for applications in areas such as photovoltaics, optoelectronics, and spintronics. In specific, the formation mechanisms of two-dimensional CMCs are discussed. The growth of colloidal nanocrystals into a two-dimensional shape is found to require either an intrinsic structural asymmetry or the assist of coexisted ligand molecules, which act as lamellar double-layer templates or "facet" the crystals via selective adsorption. By performing optical characterizations and especially ultrafast spectroscopic measurements on these two-dimensional CMCs, their unique electronic and excitonic features are revealed. A strong dependence of optical transition energies linked to both interband and inter-subband processes on the crystal geometry can be verified, highlighting a tremendous confinement effect in such nanocrystals. With the self-assembly of two-dimensional nanocrystals or coupling of different phases by growing heterostructures, unconventional optical performances such as charge transfer state generation or efficient Förster resonance energy transfer are discovered. The growth of large-scale individualized PbS and SnS nanosheets can be realized by facile hot injection techniques, which gives the opportunity to investigate the charge carrier behavior within a single nanocrystal. According to the results of the device-based measurements on these individualized crystals, structure asymmetry-induced anisotropic electrical responses and Rashba effects caused by a splitting of spin-resolved bands in the momentum space due to strong spin-orbit-coupling are demonstrated. It is foreseen that such geometry-controlled, large-scale two-dimensional CMCs can be the ideal materials used for designing high-efficiency photonics and electronics.