Electronic nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties

J Sci Food Agric. 2022 Apr;102(6):2232-2241. doi: 10.1002/jsfa.11561. Epub 2021 Oct 21.

Abstract

Background: Olive oil continues to be the main destination for olives. The production of table olives is increasing. 'Californian-style' processes are among the most frequently employed to produce oxidized olives. Sensory evaluation requires the development of an instrumental detection method that can be used as an adjunct to traditional tasting panels.

Results: An electronic nose (E-nose) was used to classify two varieties of olives following exposure to different sterilization. Principal component analysis (PCA) revealed that both varieties had different volatile profiles. Sensory panel evaluations were similar for both. Partial least squares-discriminant analysis (PLS-DA) obtained from the E-nose was able to separate the two varieties and explained 82% of total variance. Moreover, volatile profiles correctly classified olives according to sterilization times recorded up to 121 °C . The only exception was at F0 ≥ 22 min, at which a plot of PCA outcomes failed to differentiate scores. E-nose data showed similar results to those produced from the volatile analysis when grouping samples were sterilized to F0 ≥ 18 min, at the same time distinguishing these samples from those subjected to less intense thermal treatments. A partial least squares (PLS) chemometric approach was evaluated for quantifying important olive quality parameters. With regards to validation parameters, R P 2 pertaining to perceived defect was 0.88, whilst R P 2 pertaining to overall assessment was 0.78.

Conclusions: E-nose offers a fast, inexpensive and non-destructive method for discriminating between varieties and thermal treatments up to a point at which cooking defects are highly similar (from F0 = 18 onwards). © 2021 Society of Chemical Industry.

Keywords: E-nose; cooking defect; olives; sensory analysis; sterilization treatment.

MeSH terms

  • Electronic Nose*
  • Least-Squares Analysis
  • Olea*
  • Olive Oil / analysis
  • Sterilization

Substances

  • Olive Oil