Cretaceous and Eocene fossils of the rare extant genus Synneuron Lundstrom (Diptera: Canthyloscledidae): evidence of a true Pangean clade

Cladistics. 2020 Aug;36(4):413-423. doi: 10.1111/cla.12413. Epub 2020 Mar 29.

Abstract

The first two fossil species of the canthyloscelid genus Synneuron are described based on compression wings. Synneuron eomontana sp. nov. is described from the Middle Eocene Coal Creek Member of the Kishenehn Formation, in the USA, and Synneuron jelli sp. nov. is described from the Lower Cretaceous Koonwarra Fossil Bed of the Korumburra Group, in Australia. The wings are illustrated and compared to the extant species of the genus, to species of the three other recent genera of Canthyloscelidae and to an anisopodid. A phylogenetic analysis of the relationships between the species of Synneuron was performed. The Eocene fossil S. eomontana appears as sister of the pair of recent Holarctic species of the genus, while the Australian Cretaceous species S. jelli is sister of the clade with the species of Synneuron of the northern hemisphere. The sister group of Synneuron is the canthyloscelid clade (Hyperoscelis + Canthyloscelis), for which a middle Jurassic fossil is known. At the early Cretaceous, Gondwana was already separated from Laurasia and the disjunction between the species of Synneuron in Australia and the northern hemisphere clade of the genus suggest a true pangeic origin for the genus. The biology of the canthyloscelid larvae is shaped by its trophic specialization-xylosaprophagous. This suggests that the transition from the Pangean Jurassic gymnosperm-dominated forests to the late Cretaceous angiosperm-dominated forests may be related to the low recent diversity of Synneuron or of the canthyloscelids in the world-and maybe to the extinction of the genus in the southern hemisphere. This major turnover of the vegetation type along the Cretaceous may be also somehow related to the complete extinction of other groups of flies strictly associated with gymnosperms, as may be the case of the lower brachyceran family Zhangsolvidae. This speculation needs additional corroboration from other groups, that will become available with the combination of systematics, paleontology and biogeographical information of different early Cretaceous clades.

MeSH terms

  • Animals
  • Australia
  • Diptera / classification*
  • Diptera / genetics
  • Fossils*
  • North America
  • Phylogeny
  • Wings, Animal*