Thermodynamic Regulation of Dendrite-Free Li Plating on Li3Bi for Stable Lithium Metal Batteries

Nano Lett. 2021 Oct 27;21(20):8664-8670. doi: 10.1021/acs.nanolett.1c02613. Epub 2021 Oct 7.

Abstract

Rechargeable batteries with metallic lithium (Li) anodes are attracting ever-increasing interests because of their high theoretical specific capacity and energy density. However, the dendrite growth of the Li anode during cycling leads to poor stability and severe safety issues. Here, Li3Bi alloy coated carbon cloth is rationally chosen as the substrate of the Li anode to suppress the dendrite growth from a thermodynamic aspect. The adsorption energy of a Li atom on Li3Bi is larger than the cohesive energy of bulk Li, enabling uniform Li nucleation and deposition, while the high diffusion barrier of the Li atom on Li3Bi blocks the migration of adatoms from adsorption sites to the regions of fast growth, which further ensures uniform Li deposition. With the dendrite-free Li deposition, the composite Li/Li3Bi anode enables over 250 cycles at an ultrahigh current density of 20 mA cm-2 in a symmetrical cell and delivers superior electrochemical performance in full batteries.

Keywords: Li metal anode; Li3Bi alloy; adsorption energy; dendrite-free; surface diffusion barrier.