Observing two-photon subwavelength interference of broadband chaotic light in a polarization-selective Michelson interferometer

Opt Express. 2021 Sep 13;29(19):30094-30103. doi: 10.1364/OE.434733.

Abstract

We demonstrated a method to achieve the two-photon subwavelength effect of true broadband chaotic light in polarization-selective Michelson interferometer based on two-photon absorption detection. To our knowledge, it is the first time that this effect has been observed with broadband chaotic light. In theory, the two-photon polarization coherence matrix and probability amplitudes matrix are combined to develop polarized two-photon interference terms, which explains the experimental results well. To make better use of this interferometer to produce the subwavelength effect, we also make a series of error analyses to find out the relationship between the visibility and the degree of polarization error. Our experimental and theoretical results contribute to the understanding of the two-photon subwavelength interference, which shed light on the development of the two-photon interference theory of vector light field based on quantum mechanics. The characteristic of the two-photon subwavelength effect have significant applications in temporal ghost imaging, such as it helps to improve the resolution of temporal objects.