Extreme pre-fire drought decreases shrub regeneration on fertile soils

Ecol Appl. 2022 Jan;32(1):e02464. doi: 10.1002/eap.2464. Epub 2021 Oct 28.

Abstract

Extreme drought and increasing temperatures can decrease the resilience of plant communities to fires. Not only may extremely dry conditions during or after fires lead to higher plant mortality and poorer recruitment, but severe pre-fire droughts may reduce the seed production and belowground vigor that are essential to post-fire plant recovery, and may indirectly facilitate invasion. We studied survival, recruitment, and growth of shrubs and herbs in chaparral (shrubland) communities in Northern California after a 2015 fire that immediately followed California's extreme 3-yr drought. We followed the same protocols used to study similar, adjacent communities after a 1999 fire that did not follow a drought, and we compared the two recovery trajectories. Overall, the 2015 fire was not more severe than the 1999 fire, yet it caused higher mortality and lower growth of resprouting shrubs on fertile (sandstone) soils. In contrast, the 2015 fire did not affect the mortality or growth of resprouting shrubs on infertile (serpentine) soils, the density of shrub seedlings, or the richness or cover of native herbs differently than the 1999 fire. However, the 2015 fire facilitated a massive increase in exotic herbaceous cover, especially on fertile soils, possibly portending the early stages of a type conversion to exotic-dominated grassland. Our findings indicate that the consequences of climate change on fire-dependent communities will include effects of pre-fire as well as post-fire climate, and that resprouting shrubs are particularly likely to be sensitive to pre-fire drought.

Keywords: chaparral; climate change; drought; fire; invasive grasses; recruitment; shrubland.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Climate Change
  • Droughts*
  • Ecosystem
  • Plants
  • Soil*

Substances

  • Soil

Associated data

  • figshare/10.6084/m9.figshare.13583528