Parameter optimization of frequency sweeping digital holography for the measurement of ground optical surfaces

Appl Opt. 2021 Sep 20;60(27):8368-8374. doi: 10.1364/AO.428163.

Abstract

This paper describes the dependence of the precision of digital holographic methods on measurement parameters. The predominantly discussed parameters are illumination intensity and its homogeneity, surface microroughness, the influence of measurement geometry, as well as object shape, since most of them can be optimized by experimental arrangement. Frequency sweeping digital holography as well as dual-wavelength digital holography in the Fourier arrangement are tested and the results are discussed. It transpires that the methods are not very sensitive to object microroughness or overall reflectivity. Instead, it is the similarity of signal and reference waves that has the highest impact on measurement. After parameter optimization, the holographic methods can be advantageously used for ground surface measurements in optical workshops.