Radioiodinated 4-(p-Iodophenyl) Butanoic Acid-Modified Estradiol Derivative for ER Targeting SPECT Imaging

Anal Chem. 2021 Oct 19;93(41):13998-14006. doi: 10.1021/acs.analchem.1c03616. Epub 2021 Oct 6.

Abstract

Overexpression of estrogen receptors (ERs) is one of the important characteristics of most breast cancers. We aim to develop a new type of ER-specific radioiodine-labeled estrogen derivative ([131I]IPBA-EE), which was modified with an albumin-specific ligand 4-(p-iodophenyl) butyric acid (IPBA) to improve the metabolic stability and enhance the ER-targeting ability of estrogen. [131I]IPBA-EE can effectively bind to albumin in vitro, and its dissociation constant (Kd = 0.31 μM) is similar to IPBA (Kd = 0.30 μM). The uptake of [131I]IPBA-EE in ER-positive MCF-7 cells (41.81 ± 3.41%) was significantly higher than that in ER-negative MDA-MB-231 cells (8.78 ± 2.37%, ***P < 0.0005) and could be significantly blocked (3.92 ± 0.35%, ***P < 0.0005). The uptakes of [131I]IPBA-EE in rat uterus and ovaries were 5.66 ± 0.34% ID/g and 5.71 ± 2.77% ID/g, respectively, at 1 h p.i., and these uptakes could be blocked by estradiol (uterus: 2.81 ± 0.41% ID/g, *P < 0.05; ovarian: 3.02 ± 0.08% ID/g, *P < 0.05). SPECT/CT imaging showed that ER-positive MCF-7 tumor uptake of [131I]IPBA-EE reached to 6.07 ± 0.20% ID/g at 7 h p.i., which was significantly higher than that of ER-negative MDA-MB-231 tumor (0.87 ± 0.08% ID/g, **P < 0.005) and could be blocked obviously with fulvestrant (1.65 ± 1.56% ID/g, *P < 0.05). In conclusion, a novel radioiodinated estradiol derivative, [131I]IPBA-EE with albumin-binding property and good metabolic stability, was developed to image the ER in breast cancer. This promising ER-targeted probe has the potential to warrant further preclinical investigations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms* / diagnostic imaging
  • Butyric Acid
  • Estradiol*
  • Estrogens
  • Female
  • Humans
  • Iodine Radioisotopes
  • Rats
  • Tissue Distribution
  • Tomography, Emission-Computed, Single-Photon

Substances

  • Estrogens
  • Iodine Radioisotopes
  • Butyric Acid
  • Estradiol