Visible Light Induced Conventional Step-Growth and Chain-Growth Condensation Polymerizations by Electrophilic Aromatic Substitution

Macromol Rapid Commun. 2022 Jan;43(1):e2100584. doi: 10.1002/marc.202100584. Epub 2021 Oct 17.

Abstract

A novel visible light induced step-growth polymerization by electrophilic aromatic substitution between photochemically generated carbocations and dimethoxybenzene nucleophile is described. Conventional step-growth polymerization and chain-growth condensation polymerization (CCP) mechanisms are presented. It is found that by changing the molar ratios of the monomers slightly, the CCP mechanism becomes operative and relatively higher molecular weight polymers are obtained because of the higher reactivity of the end groups of the intermediates and oligomers than that of the monomers. The possibility of grafting onto polymers containing epoxide at their side chains by photoinduced chain end activation of poly(dimethoxyphenylene methylene) is demonstrated. This study is expected to promote potential applications of the combination of photoinduced electron transfer reactions and CCP in macromolecular synthesis and material science.

Keywords: chain-growth condensation polymerization; electrophilic aromatic substitution; photopolymerization; polyphenylenemethylene; step-growth polymerization.

MeSH terms

  • Light*
  • Molecular Weight
  • Polymerization
  • Polymers*

Substances

  • Polymers