Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes

Sci Total Environ. 2022 Feb 1;806(Pt 2):150451. doi: 10.1016/j.scitotenv.2021.150451. Epub 2021 Sep 21.

Abstract

Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.

Keywords: Agricultural wastes; Bioconversion; LPMO; Microorganisms; Rapid decomposition; Rice straw.

Publication types

  • Review

MeSH terms

  • Agriculture
  • Cellulose
  • Fungal Proteins*
  • Mixed Function Oxygenases*
  • Polysaccharides

Substances

  • Fungal Proteins
  • Polysaccharides
  • Cellulose
  • Mixed Function Oxygenases