Correlation of prostate tumor eccentricity and Gleason scoring from prostatectomy and multi-parametric-magnetic resonance imaging

Quant Imaging Med Surg. 2021 Oct;11(10):4235-4244. doi: 10.21037/qims-21-24.

Abstract

Background: Proliferating cancer cells interacting with their microenvironment affects a tumor's spatial shape. Elongation or roundness (eccentricity) of lung, skin, and breast cancers indicates the cancer's relative aggressiveness. Non-invasive determination of the prostate tumor's shape should provide meaningful input for prognostication and clinical management. There are currently few studies of prostate tumor shape, therefore this study examines the relationship between a prostate tumor's eccentricity, derived from spatially registered multi-parametric MRI and histology slides, and Gleason scores.

Methods: A total of 26 consecutive patients were enrolled in the study. Median patient age was 60 years (range, 49 to 75 years), median PSA was 5.8 ng/mL (range, 2.3 to 23.7 ng/mL, and median Gleason score was 7 (range, 6 to 9). Multi-parametric MRI (T1, T2, Diffusion, Dynamic Contrast Enhanced) were resampled, rescaled, translated, and stitched to form spatially registered multi-parametric cubes. Multi-parametric signatures that characterize prostate tumors were inserted into a target detection algorithm (Adaptive Cosine Estimator, ACE). Various detection thresholds were applied to discriminate tumor from normal tissue. Also, tumor shape was computed from the histology slides. Blobbing, labeling, and calculation of eccentricity using moments of inertia were applied to the multi-parametric MRI and histology slides. The eccentricity measurements were compared to the Gleason scores from 25 patients.

Results: From histology slides analysis: the correlation coefficient between the eccentricity for the largest blob and a weighted average eccentricity against the Gleason score ranged from -0.67 to -0.78 for all 18 patients whose tumor volume exceeded 1.0 cc. From multi-parametric MRI analysis: the correlation coefficient between the eccentricity for the largest blob for varying thresholds against the Gleason score ranged from -0.60 to -0.66 for all 25 patients showing contrast uptake in the Dynamic Contrast Enhancement (DCE) MRI.

Conclusions: Spherical shape prostate adenocarcinoma shows a propensity for higher Gleason score. This novel finding follows lung and breast adenocarcinomas but depart from other primary tumor types. Analysis of multi-parametric MRI can non-invasively determine the prostate tumor's morphology and add critical information for prognostication and disease management. Eccentricity of smaller tumors (<1.0 cc) from MP-MRI correlates well with Gleason score, unlike eccentricity measured using histology of wholemount prostatectomy.

Keywords: Tumor morphology; histology of wholemount prostatectomy; multi-parametric MRI; prostate cancer; supervised target detection.