PDZ Binding Kinase/T-LAK Cell-Derived Protein Kinase Plays an Oncogenic Role and Promotes Immune Escape in Human Tumors

J Oncol. 2021 Sep 23:2021:8892479. doi: 10.1155/2021/8892479. eCollection 2021.

Abstract

Background: PDZ binding kinase (PBK)/T-LAK cell-derived protein kinase (TOPK) is an important mitotic kinase that promotes tumor progression in some cancers. However, the pan-cancer analysis of PBK/TOPK and its role in tumor immunity are limited.

Methods: The oncogenic and immune roles of PBK in various cancers were explored using multiple databases, including Oncomine, Human Protein Atlas, ULCAN, Tumor Immune Estimation Resource 2.0, STRING, and Gene Expression Profiling Interactive Analysis 2, and data collected from The Cancer Genome Atlas and Genotype-Tissue Expression Project. Several bioinformatics tools and methods were used for quantitative analyses and panoramic descriptions, such as the DESeq2 and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm.

Results: PBK was expressed at higher levels in most solid tumors than in normal tissues in multiple databases. PBK was associated with an advanced tumor stage and grade and a poor prognosis in most cases. PBK was associated with tumor immune cell infiltration in most cases and was especially positively correlated with TAMs, Tregs, MDSCs, and T cell exhaustion in KIRC, LGG, and LIHC. PBK was closely related to TMB, MSI, and immune checkpoint genes in various cancers, and patients with higher expression of PBK in KIRC, LGG, and LIHC had higher TIDE scores and lower immune responses in the predicted results. PBK was closely related to cell cycle regulation and immune-related processes in LIHC and LGG according to GO and KEGG enrichment analyses.

Conclusions: PBK may play an oncogenic role in most solid tumors and promotes immune escape, especially in KIRC, LGG, and LIHC. This study suggests the potential value of PBK inhibitors combined with immunotherapy.