Experimental investigation of an active inclined solar panel absorber solar still-energy and exergy analysis

Environ Sci Pollut Res Int. 2022 Feb;29(10):14005-14018. doi: 10.1007/s11356-021-16444-3. Epub 2021 Oct 2.

Abstract

The objective of the current study is to investigate the performance of the inclined solar panel basin still (ISPBS) incorporated with a spiral tube collector (STC) for various mass flow rates of water (mf). The maximum potable water yield of 8.1, 6.9, and 6.1 kg is obtained for different mass flow rates of 1.8, 3.2, and 4.7 kg/h in each instance. Also, for mf of 1.8, 3.2, and 4.7 kg per hour, the daily average energy and exergy efficiency of the ISPBS is recorded to be 47.9, 39.3, and 31.02 % and 9.8, 7.9, and 5.6 %, in each instance. The average electrical, thermal, and exergy efficiency of the PV panel is noted to be 6.5, 7.1, and 7.5 %; 15.67, 17.1, and 18.04 %; and 20.03, 22.21, and 23.36 % for mf of 1.8, 3.2, and 4.7 kg/h in each instance. The rise in mf causes a drop in the fresh water production yield; thermal, exergy, and overall thermal effectiveness; and an enhancement in the power production of the panel, electrical, thermal, exergy, and overall exergy efficiency of the system. Also, the cost of yield production is noted to be low-cost in AISS at minimum mf of 1.8 kg per hour (0.019 $/l) when compared to the other two mf of 3.2 and 4.7 kg per hour (0.022 and 0.025 $/l).

Keywords: Active inclined solar still; Effect of mass flow rates; Enhancement of panel efficiency; Fresh water; PV thermal and exergy analysis.

MeSH terms

  • Electricity
  • Fresh Water
  • Solar Energy*
  • Sunlight
  • Water

Substances

  • Water