Structure-dependent electrochemical properties of cobalt (II) carbonate hydroxide nanocrystals in supercapacitors

J Colloid Interface Sci. 2022 Feb;607(Pt 2):1633-1640. doi: 10.1016/j.jcis.2021.09.059. Epub 2021 Sep 13.

Abstract

In this work, we report the structure-dependent electrochemical performance of cobalt carbonate hydroxide (Co2(OH)2CO3) nanocrystals by experimental investigation and theoretical simulation. Different Co2(OH)2CO3 nanostructures including two-dimensional (2D) nanosheets (NSs) and one-dimensional (1D) nanowires (NWs), were synthesized on self-supported carbon cloth substrates by a facile hydrothermal method. Compared to 1D NWs, 2D Co2(OH)2CO3 NSs provided a short ion transfer path, and low electron transfer resistance during the electrochemical reaction. At the current density of 2 mA cm-2, 2D Co2(OH)2CO3 NSs exhibited a higher area capacitance of 2.15F cm-2 and better cycling performance (96.2% retention after 10,000 cycles) than that of 1D NWs (1.15F cm-2 and 90.1% retention). First-principles density functional theory (DFT) calculations revealed that the band gap of the (120) facet in 2D NSs was 0.2 eV, far less than of the (200) facet in 1D NWs (1.04 eV). Electrochemical impedance spectroscopy (EIS) measurements further indicated that the electron transfer and reaction kinetics were more efficient in 2D NSs. This work can provide an important insight in understanding the mechanism of electrochemical energy storage.

Keywords: Co(2)(OH)(2)CO(3); Electron transfer; Nanosheet; Nanowire; Structure dependence; Supercapacitors.