A novel organic carbon accumulation mechanism in croplands in the Yellow River Delta, China

Sci Total Environ. 2022 Feb 1;806(Pt 2):150629. doi: 10.1016/j.scitotenv.2021.150629. Epub 2021 Sep 28.

Abstract

The trends and mechanisms of organic carbon changes in coastal delta croplands are not yet clear due to the complexity physicochemical processes in soil. In this study, combing powder x-ray diffraction (XRD), microbial analysis, and density functional theory in quantum mechanics, we proposed a novel mechanism underlying OC accumulation. We investigated changes of three kinds of organic carbon (OC)-dissolved organic carbon (DOC), light fraction organic carbon (LFOC), and heavy fraction organic carbon (HFOC) in the Yellow River Delta croplands. We found that HFOC, dominant in coastal delta cropland soil, formed at different ages and its density increased with increasing reclamation time. Yet, DOC and LFOC had no significant increase or decrease tendency. Moreover, in coastal delta croplands, HFOC accumulation might be a complex progress, including the loss of indigenous OC and the accumulation of newly input OC. Based on these results, we proposed that although root exudative DOC (organic acids) could cause the indigenous OC loss by forming a specific microbial community, it still was a source of HFOC and promoted the OC accumulation. More importantly, based on density functional theory, we verified that these root exudative organic acids could adsorb on SiO2 together with crystalline Fe oxides (Fec) to form aggregates. The finding could explain the phenomenon that the XRD results showed samples were compounds of SiO2, Fec, and OC and the accumulation of HFOC in coastal delta croplands. By revealing a new OC accumulation mechanism in coastal delta croplands, this study provides novel insights into the mechanism of OC dynamics in coastal delta croplands and the global carbon budget.

Keywords: Delta croplands; Density functional theory; Iron oxide; Microbes; Root exudative organic acids.

MeSH terms

  • Carbon* / analysis
  • China
  • Crops, Agricultural
  • Rivers*
  • Silicon Dioxide
  • Soil

Substances

  • Soil
  • Carbon
  • Silicon Dioxide