Fe3O4 assembly for tumor accurate diagnosis by endogenous GSH responsive T2/ T1 magnetic relaxation conversion

J Mater Chem B. 2021 Sep 29;9(37):7734-7740. doi: 10.1039/d1tb01018b.

Abstract

Superparamagnetic iron oxide nanoparticles with high magnetization strength and good biological safety have been widely used as magnetic resonance imaging (MRI) contrast agents for tumors. However, the accuracy of tumor diagnosis is still low due to the lack of tumor targeting and the interference signals from normal tissues. Endogenous substances in tumor (such as high levels of GSH and pH) stimuli-responsive contrast agents could offer higher sensitivity for tumor diagnosis. Herein, based on the characteristic of overexpression of GSH in tumors, we propose an ultra-small Fe3O4 assembly as an endogenous GSH responsive MRI contrast agent. The ultra-small superparamagnetic Fe3O4 are bonded to the crosslinker cystamine to synthesize Fe3O4 nanoclusters, which exhibit a T2 imaging effect. When the contrast agent reaches the tumor tissue, the disulfide bond in cystamine is induced by GSH to break, the Fe3O4 nanoclusters are disassembled into ultra-small Fe3O4 nanoparticles, and the relaxation signal changes from T2 to T1, which is helpful for accurate diagnosis of tumors. In vivo experiments have shown that Fe3O4 nanoclusters can rapidly respond to overexpressed GSH in tumor sites for T2/T1 switchable imaging. This work not only designed an endogenous GSH responsive platform through simple synthesis methods, but also improved the accuracy of tumor diagnosis through the transformation of T2/T1 MRI signals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacology
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Contrast Media / chemistry*
  • Cystamine / chemistry
  • Female
  • Ferrosoferric Oxide / chemistry*
  • Glutathione / chemistry*
  • Glutathione / metabolism
  • Magnetic Resonance Imaging / methods*
  • Magnetite Nanoparticles / chemistry
  • Mice
  • Mice, Inbred BALB C
  • Neoplasms / diagnosis*
  • Neoplasms / diagnostic imaging

Substances

  • Biocompatible Materials
  • Contrast Media
  • Magnetite Nanoparticles
  • Glutathione
  • Cystamine
  • Ferrosoferric Oxide