Real-time multimodal image registration with partial intraoperative point-set data

Med Image Anal. 2021 Dec:74:102231. doi: 10.1016/j.media.2021.102231. Epub 2021 Sep 21.

Abstract

We present Free Point Transformer (FPT) - a deep neural network architecture for non-rigid point-set registration. Consisting of two modules, a global feature extraction module and a point transformation module, FPT does not assume explicit constraints based on point vicinity, thereby overcoming a common requirement of previous learning-based point-set registration methods. FPT is designed to accept unordered and unstructured point-sets with a variable number of points and uses a "model-free" approach without heuristic constraints. Training FPT is flexible and involves minimizing an intuitive unsupervised loss function, but supervised, semi-supervised, and partially- or weakly-supervised training are also supported. This flexibility makes FPT amenable to multimodal image registration problems where the ground-truth deformations are difficult or impossible to measure. In this paper, we demonstrate the application of FPT to non-rigid registration of prostate magnetic resonance (MR) imaging and sparsely-sampled transrectal ultrasound (TRUS) images. The registration errors were 4.71 mm and 4.81 mm for complete TRUS imaging and sparsely-sampled TRUS imaging, respectively. The results indicate superior accuracy to the alternative rigid and non-rigid registration algorithms tested and substantially lower computation time. The rapid inference possible with FPT makes it particularly suitable for applications where real-time registration is beneficial.

Keywords: image-guided interventions; medical image registration; point-set registration; prostate cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Prostate / diagnostic imaging
  • Prostatic Neoplasms*
  • Ultrasonography