Synthesis of Molybdenum Sulfide/Tellurium Hetero-Composite by a Simple One-Pot Hydrothermal Technique for High-Performance Supercapacitor Electrode Material

Nanomaterials (Basel). 2021 Sep 9;11(9):2346. doi: 10.3390/nano11092346.

Abstract

It is necessary to investigate effective energy storage devices that can fulfill the requirements of short-term and long-term durable energy outputs. Here, we report a simple one-pot hydrothermal technique through which to fabricate the MoS2/Te nanocomposite to be used as an effective electrode material for high-performance supercapacitors. Comprehensive characterization of the as-fabricated nanomaterial was performed using FESEM, HRTEM, XRD, FTIR, XPS, etc., as well as electrochemical characterizations. The electrochemical characterization of the as-fabricated nanocomposite electrode material showed a high specific capacitance of 402.53 F g-1 from a galvanostatic charge-discharge (GCD) profile conducted at 1 A g-1 current density. The electrode material also showed significant rate performance with high cyclic stability reaching up to 92.30% under 4000 cycles of galvanostatic charge-discharge profile at a current density of 10 A g-1. The highly encouraging results obtained using this simple synthetic approach demonstrate that the hetero-structured nanocomposite of MoS2/Te electrode material could serve as a promising composite to use in effective supercapacitors or energy storage devices.

Keywords: electrochemistry; hydrothermal; nanocomposite; supercapacitor; tellurium.