Immunoinformatic Study of Recombinant LigA/BCon1-5 Antigen and Evaluation of Its Diagnostic Potential in Primary and Secondary Binding Tests for Serodiagnosis of Porcine Leptospirosis

Pathogens. 2021 Aug 26;10(9):1082. doi: 10.3390/pathogens10091082.

Abstract

Leptospirosis is responsible for hampering the productivity of swine husbandry worldwide. The aim of this study was to assess the efficacy of bioinformatics tools in predicting the three-dimensional structure and immunogenicity of recombinant LigBCon1-5 (rLigBCon1-5) antigen. A battery of bioinformatics tools such as I-TASSER, ProSA and SAVES v6.0 were used for the prediction and assessment of the predicted structure of rLigBCon1-5 antigen. Bepipred-2.0, DiscoTope v2.0 and ElliPro servers were used to predict linear and conformational epitopes while T-cell epitopes were predicted using NetMHCpan 4.1 and IEDB recommended 2.22 method for MHC Class I and II peptides respectively. The results obtained using various in silico methods were then compared with wet lab experiments comprising of both primary (IgG Dot ELISA Dipstick test) and secondary-binding assays (Latex Agglutination Test [LAT]) to screen 1153 porcine serum samples. The three-dimensional structure of rLigA/BCon1-5 protein as predicted by I-TASSER was found to be reliable by Ramachandran Plot and ProSA. The ElliPro server suggested 10 and three potential linear and conformational B-cell-epitopes, respectively, on the peptide backbone of the rLigA/BCon1-5 protein. The DiscoTope prediction server suggested 47 amino acid residues to be part of B-cell antigen. Ten of the most efficient peptides for MHC-I and II grooves were predicted by NetMHCpan 4.1 and IEDB recommended 2.22 method, respectively. Of these, three peptides can serve dual functions as it can fit both MHC I and II grooves, thereby eliciting both humoral-and cell-mediated immune responses. The prediction of these computational approaches proved to be reliable since rLigBCon1-5 antigen-based IgG Dot ELISA Dipstick test and LAT gave results in concordance to gold standard test, the Microscopic Agglutination Test (MAT), for serodiagnosis of leptospirosis. Both the IgG Dot ELISA Dipstick test and LAT were serodiagnostic assays ideally suited for peripheral level of animal health care system as "point of care" tests for the detection of porcine leptospirosis.

Keywords: Dot ELISA dipstick test; bioinformatics tools; in silico prediction; latex agglutination test; leptospirosis; microscopic agglutination test.