Nitrogen-Doped Carbon Aerogels Derived from Starch Biomass with Improved Electrochemical Properties for Li-Ion Batteries

Int J Mol Sci. 2021 Sep 14;22(18):9918. doi: 10.3390/ijms22189918.

Abstract

Among all advanced anode materials, graphite is regarded as leading and still-unrivaled. However, in the modern world, graphite-based anodes cannot fully satisfy the customers because of its insufficient value of specific capacity. Other limitations are being nonrenewable, restricted natural graphite resources, or harsh conditions required for artificial graphite production. All things considered, many efforts have been made in the investigation of novel carbonaceous materials with desired properties produced from natural, renewable resources via facile, low-cost, and environmentally friendly methods. In this work, we obtained N-doped, starch-based carbon aerogels using melamine and N2 pyrolysis as the source of nitrogen. The materials were characterized by X-ray powder diffraction, elemental analysis, X-ray photoelectron spectroscopy, galvanostatic charge-discharge tests, cyclic voltammetry, and electrochemical impedance spectroscopy. Depending on the doping method and the nitrogen amount, synthesized samples achieved different electrochemical behavior. N-doped, bioderived carbons exhibit far better electrochemical properties in comparison with pristine ones. Materials with the optimal amount of nitrogen (such as MCAGPS-N8.0%-carbon aerogel made from potato starch modified with melamine and CAGPS-N1.2%-carbon aerogel made from potato starch modified by N2 pyrolysis) are also competitive to graphite, especially for high-performance battery applications. N-doping can enhance the efficiency of Li-ion cells mostly by inducing more defects in the carbon matrix, improving the binding ability of Li+ and charge-transfer process.

Keywords: Li-ion battery; N-doping; anode material; biomass; carbon aerogel; chemical modification; functionalization; starch.

MeSH terms

  • Biomass*
  • Carbon / chemistry*
  • Electric Power Supplies*
  • Electricity
  • Electrochemistry*
  • Gels / chemistry*
  • Ions
  • Lithium / chemistry*
  • Nitrogen / chemistry*
  • Photoelectron Spectroscopy
  • Starch / chemistry*
  • X-Ray Diffraction

Substances

  • Gels
  • Ions
  • Carbon
  • Starch
  • Lithium
  • Nitrogen