Machine Learning for Process Monitoring and Control of Hot-Melt Extrusion: Current State of the Art and Future Directions

Pharmaceutics. 2021 Sep 9;13(9):1432. doi: 10.3390/pharmaceutics13091432.

Abstract

In the last few decades, hot-melt extrusion (HME) has emerged as a rapidly growing technology in the pharmaceutical industry, due to its various advantages over other fabrication routes for drug delivery systems. After the introduction of the 'quality by design' (QbD) approach by the Food and Drug Administration (FDA), many research studies have focused on implementing process analytical technology (PAT), including near-infrared (NIR), Raman, and UV-Vis, coupled with various machine learning algorithms, to monitor and control the HME process in real time. This review gives a comprehensive overview of the application of machine learning algorithms for HME processes, with a focus on pharmaceutical HME applications. The main current challenges in the application of machine learning algorithms for pharmaceutical processes are discussed, with potential future directions for the industry.

Keywords: Industry 4.0; drug; hot-melt extrusion (HME); in/on-line process monitoring; machine learning; polymer; process analytical technology.

Publication types

  • Review