Understanding the Nature of the Long-Range Memory Phenomenon in Socioeconomic Systems

Entropy (Basel). 2021 Aug 29;23(9):1125. doi: 10.3390/e23091125.

Abstract

In the face of the upcoming 30th anniversary of econophysics, we review our contributions and other related works on the modeling of the long-range memory phenomenon in physical, economic, and other social complex systems. Our group has shown that the long-range memory phenomenon can be reproduced using various Markov processes, such as point processes, stochastic differential equations, and agent-based models-reproduced well enough to match other statistical properties of the financial markets, such as return and trading activity distributions and first-passage time distributions. Research has lead us to question whether the observed long-range memory is a result of the actual long-range memory process or just a consequence of the non-linearity of Markov processes. As our most recent result, we discuss the long-range memory of the order flow data in the financial markets and other social systems from the perspective of the fractional Lèvy stable motion. We test widely used long-range memory estimators on discrete fractional Lèvy stable motion represented by the auto-regressive fractionally integrated moving average (ARFIMA) sample series. Our newly obtained results seem to indicate that new estimators of self-similarity and long-range memory for analyzing systems with non-Gaussian distributions have to be developed.

Keywords: 1/f noise; ARFIMA; Higuchi’s method; absolute value estimator; anomalous diffusion; first-passage times; fractional Lèvy stable motion; long-range memory; mean squared displacement; multiplicative point process.