Detection and classification of lung diseases for pneumonia and Covid-19 using machine and deep learning techniques

J Ambient Intell Humaniz Comput. 2023;14(4):3239-3259. doi: 10.1007/s12652-021-03464-7. Epub 2021 Sep 18.

Abstract

Since the arrival of the novel Covid-19, several types of researches have been initiated for its accurate prediction across the world. The earlier lung disease pneumonia is closely related to Covid-19, as several patients died due to high chest congestion (pneumonic condition). It is challenging to differentiate Covid-19 and pneumonia lung diseases for medical experts. The chest X-ray imaging is the most reliable method for lung disease prediction. In this paper, we propose a novel framework for the lung disease predictions like pneumonia and Covid-19 from the chest X-ray images of patients. The framework consists of dataset acquisition, image quality enhancement, adaptive and accurate region of interest (ROI) estimation, features extraction, and disease anticipation. In dataset acquisition, we have used two publically available chest X-ray image datasets. As the image quality degraded while taking X-ray, we have applied the image quality enhancement using median filtering followed by histogram equalization. For accurate ROI extraction of chest regions, we have designed a modified region growing technique that consists of dynamic region selection based on pixel intensity values and morphological operations. For accurate detection of diseases, robust set of features plays a vital role. We have extracted visual, shape, texture, and intensity features from each ROI image followed by normalization. For normalization, we formulated a robust technique to enhance the detection and classification results. Soft computing methods such as artificial neural network (ANN), support vector machine (SVM), K-nearest neighbour (KNN), ensemble classifier, and deep learning classifier are used for classification. For accurate detection of lung disease, deep learning architecture has been proposed using recurrent neural network (RNN) with long short-term memory (LSTM). Experimental results show the robustness and efficiency of the proposed model in comparison to the existing state-of-the-art methods.

Keywords: Covid-19; Deep learning; Lung disease prediction; Machine learning; Soft computing.