Tinzaparin inhibits VL30 retrotransposition induced by oxidative stress and/or VEGF in HC11 mouse progenitor mammary cells: Association between inhibition of cancer stem cell proliferation and mammosphere disaggregation

Oncol Rep. 2021 Nov;46(5):241. doi: 10.3892/or.2021.8192. Epub 2021 Sep 24.

Abstract

Tinzaparin is an anticoagulant and antiangiogenic drug with inhibitory properties against tumor growth. VEGF stimulates angiogenesis, while an association between reactive oxygen species (ROS) and angiogenesis is involved in tumor progression. The present study aimed to investigate the effect of tinzaparin on VL30 retrotransposition‑positive mouse HC11 mammary stem‑like epithelial cells, previously reported to be associated with induced mammosphere/cancer stem cell (CSC) generation and tumorigenesis. Under 24 h serum starvation, 15.2% nominal retrotransposition frequency was increased to 29%. Additionally, while treatment with 3‑12 ng/ml VEGF further induced retrotransposition frequency in a dose‑dependent manner (up to 40.3%), pre‑incubation with tinzaparin (2 IU/ml) for 0.5‑4 h reduced this frequency to 18.3% in a time‑dependent manner, confirmed by analogous results in NIH3T3 fibroblasts. Treatment with 10‑40 pg/ml glucose oxidase (GO) for 24 h induced HC11 cell retrotransposition in a dose‑dependent manner (up to 82.5%), while a 3 h pre‑incubation with tinzaparin (1 or 2 IU/ml) elicited a 13.5 or 25.5% reduction in retrotransposition, respectively. Regarding tumorigenic VL30 retrotransposition‑positive HC11 cells, treatment with 2 IU/ml tinzaparin for 5 days reduced proliferation rate in a time‑dependent manner (up to ~55%), and after 3 weeks, disaggregated soft agar‑formed foci, as well as low‑adherent mammospheres, producing single mesenchymal‑like cells with a ~50% reduced retrotransposition. With respect to the VL30 retrotransposition mechanism: While 12 ng/ml VEGF increased the level of VL30 and endogenous reverse transcriptase (enRT) transcripts ~1.41‑ and ~1.16‑fold, respectively, subsequent tinzaparin treatment reduced both endogenous/ROS‑ and VEGF‑induced levels 1.15‑ and 0.40‑fold (VL30) and 0.60‑ and 0.52‑fold (enRT), respectively. To the best of our knowledge, these data demonstrate for the first time, the novel inhibition activity of tinzaparin against ROS‑ and VEGF‑induced VL30 retrotransposition, and the proliferation and/or aggregation of mouse HC11 mammosphere/tumor‑initiating CSCs, thus contributing to the inhibition of VL30 retrotransposition‑induced primary tumor growth.

Keywords: HC11 mammary stem‑like cells; VL30 retrotransposition; breast cancer; cancer stem cells; cell proliferation; mammosphere disaggregation; tinzaparin.

MeSH terms

  • Animals
  • Anticoagulants / pharmacology
  • Cell Proliferation
  • Cells, Cultured
  • Female
  • Mice
  • Mice, Inbred BALB C
  • NIH 3T3 Cells
  • Neoplastic Stem Cells / drug effects*
  • Oxidative Stress / drug effects*
  • Tinzaparin / pharmacology*
  • Vascular Endothelial Growth Factor A / drug effects*

Substances

  • Anticoagulants
  • Vascular Endothelial Growth Factor A
  • Tinzaparin

Grants and funding

The present study was financially supported by two funds (grant no. 80899 and 81423) from the LEO Pharmaceuticals (Athens, Greece).