Classical master equations and broadened classical master equations: Some analytical results

J Chem Phys. 2021 Sep 21;155(11):114116. doi: 10.1063/5.0064325.

Abstract

Some analytical results for the steady-state properties of the single-molecule tunneling junction are obtained with the use of the broadened classical master equations and classical master equations. The case of the one electronic level of the bridge molecule coupled to a single classical harmonic oscillator is considered within the spin-less model. Based on these equations, we establish some relations between different average values of interest, considering the large bias limit and the limit of the weak electron-oscillator coupling. We derive the analytical expressions for a number of characteristic properties of the tunneling junction in these limiting cases, compare our results with those obtained by the numerically exact calculations, and find that our expressions work very well. In the diabatic regime, the approximate solutions of the classical master equations are suggested, which permit us to introduce the effective temperature Teff and perform rather simple calculations of the average vibrational excitations N and the tunnel current I. It is shown that in the adiabatic regime, the properties of the tunneling junction depend essentially on the effective temperature Teff ad. We obtain the analytical expressions for Teff ad using different approaches for the treatment of the adiabatic regime. For both the diabatic and adiabatic regimes, we calculate Teff, Teff ad, N, and I, compare our results with those available in the literature, and confirm well agreement. The dependence of N and I on the reorganization energy and the position of the electronic level of the bridge molecule is discussed.