In Situ Formation of Nano Ni-Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities

Adv Mater. 2021 Nov;33(45):e2103812. doi: 10.1002/adma.202103812. Epub 2021 Sep 20.

Abstract

The oxygen evolution reaction (OER) limits the energy efficiency of electrocatalytic systems due to the high overpotential symptomatic of poor reaction kinetics; this problem worsens over time if the performance of the OER electrocatalyst diminishes during operation. Here, a novel synthesis of nanocrystalline Ni-Co-Se using ball milling at cryogenic temperature is reported. It is discovered that, by anodizing the Ni-Co-Se structure during OER, Se ions leach out of the original structure, allowing water molecules to hydrate Ni and Co defective sites, and the nanoparticles to evolve into an active Ni-Co oxyhydroxide. This transformation is observed using operando X-ray absorption spectroscopy, with the findings confirmed using density functional theory calculations. The resulting electrocatalyst exhibits an overpotential of 279 mV at 0.5 A cm-2 and 329 mV at 1 A cm-2 and sustained performance for 500 h. This is achieved using low mass loadings (0.36 mg cm-2 ) of cobalt. Incorporating the electrocatalyst in an anion exchange membrane water electrolyzer yields a current density of 1 A cm-2 at 1.75 V for 95 h without decay in performance. When the electrocatalyst is integrated into a CO2 -to-ethylene electrolyzer, a record-setting full cell voltage of 3 V at current density 1 A cm-2 is achieved.

Keywords: CO 2 reduction; PGM-free X-ray absorption spectroscopy; cryomilling; oxygen evolution reaction.