Tailoring unique neural-network-type carbon nanofibers inserted in CoP/NC polyhedra for robust hydrogen evolution reaction

Nanoscale. 2021 Sep 17;13(35):14705-14712. doi: 10.1039/d1nr03046a.

Abstract

Three-dimensional catalysts have attracted great attention in the field of the hydrogen evolution reaction (HER).However, great challenges remain in structural innovation and performance enhancement. Herein we designed and tailored a unique three-dimensional cross-linked neural network-like CoP-based composite, that is, carbon nanofibers inserted in CoP/NC polyhedra derived from in situ self-assembled bacterial cellulose (BC) wired ZIF-67 polyhedra via high-temperature carbonization and subsequent phosphorization. The obtained integrated catalyst (3-D CNF@CoP/NC) consists of CoP/NC polyhedra with abundant active sites as the "neurons" and carbon nanofibers as the "axons", and displayed remarkable activity with an overpotential of 64.5 mV and 105.6 mV at 10 mA cm-2 in 0.5 M H2SO4 and 1 M KOH respectively and good stability with negligible current change after 80 h of chronoamperometric measurement or 4000 CV cycles. This work offers a high-performance HER catalyst and paves a new way for the rational engineering of unique 3-D interconnected hierarchical porous networks featuring ultrafast charge transfer and mass transport.