Blood volume versus deoxygenated NIRS signal: computational analysis of the effects muscle O2 delivery and blood volume on the NIRS signals

J Appl Physiol (1985). 2021 Nov 1;131(5):1418-1431. doi: 10.1152/japplphysiol.00105.2021. Epub 2021 Sep 16.

Abstract

Near-infrared spectroscopy (NIRS) signals quantify the oxygenated (ΔHbMbO2) and deoxygenated (ΔHHbMb) heme group concentrations. ΔHHbMb has been preferred to ΔHbMbO2 in evaluating skeletal muscle oxygen extraction because it is assumed to be less sensitive to blood volume (BV) changes, but uncertainties exist on this assumption. To analyze this assumption, a computational model of oxygen transport and metabolism is used to quantify the effect of O2 delivery and BV changes on the NIRS signals from a canine model of muscle oxidative metabolism (Sun Y, Ferguson BS, Rogatzki MJ, McDonald JR, Gladden LB. Med Sci Sports Exerc 48: 2013-2020, 2016). The computational analysis accounts for microvascular (ΔHbO2, ΔHHb) and extravascular (ΔMbO2, ΔHMb) oxygenated and deoxygenated forms. Simulations predicted muscle oxygen uptake and NIRS signal changes well for blood flows ranging from resting to contracting muscle. Additional NIRS signal simulations were obtained in the absence or presence of BV changes corresponding to a heme groups concentration changes (ΔHbMb = 0-48 µM). Under normal delivery (Q = 1.0 L·kg-1·min-1) in contracting muscle, capillary oxygen saturation (So2) was 62% with capillary ΔHbO2 and ΔHHb of ± 41 µΜ for ΔHbMb = 0. An increase of BV (ΔHbMb = 24 µΜ) caused a ΔHbO2 decrease (16µΜ) almost twice as much as the increase observed for ΔHHb (9 µΜ). When So2 increased to more than 80%, only ΔHbO2 was significantly affected by BV changes. The analysis indicates that microvascular So2 is a key factor in determining the sensitivity of ΔHbMbO2 and deoxygenated ΔHHbMb to BV changes. Contrary to a common assumption, the ΔHHbMb is affected by BV changes in normal contracting muscle and even more in the presence of impaired O2 delivery.NEW & NOTEWORTHY Deoxygenated is preferred to the oxygenated near-infrared spectroscopy signal in evaluating skeletal muscle oxygen extraction because it is assumed to be insensitive to blood volume changes. The quantitative analysis proposed in this study indicates that even in absence of skin blood flow effects, both NIRS signals in presence of either normal or reduced oxygen delivery are affected by blood volume changes. These changes should be considered to properly quantify muscle oxygen extraction by NIRS methods.

Keywords: O2 transport; contraction; convection; diffusion; modeling.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Blood Volume
  • Dogs
  • Muscle, Skeletal / metabolism
  • Oxygen / metabolism
  • Oxygen Consumption*
  • Spectroscopy, Near-Infrared*

Substances

  • Oxygen