Entomomonas asaccharolytica sp. nov., isolated from Acheta domesticus

Int J Syst Evol Microbiol. 2021 Sep;71(9). doi: 10.1099/ijsem.0.004997.

Abstract

Strain F2AT, isolated from the cricket Acheta domesticus, was subjected to a polyphasic taxonomic characterization. Cells of the strain were rod-shaped, Gram-stain-negative and catalase- and oxidase-positive. It did not assimilate any carbohydrates. The strain's 16S rRNA gene sequence showed highest similarity to Entomomonas moraniae QZS01T (96.4 %). The next highest similarity values were found to representatives of related genera (<93 %). The genome size of strain F2AT was 3.2 Mbp and the G+C content was 36.4 mol%. Average nucleotide identity values based on blast and MUMmer and average amino acid identity values between strain F2AT and E. moraniae QZS01T were 74.29/74.43, 83.88 and 74.70 %, respectively. The quinone system predominantly contained ubiquinone Q-8. In the polar lipid profile, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid were detected. The polyamine pattern consisted of the major compounds putrescine and spermidine. Major fatty acids were C18 : 1 ω7c and C16 : 0 and the hydroxyl acids were C12 : 0 3-OH, C14 : 0 2-OH and C14 : 0 3-OH. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. Due to its association with the only species of the genus Entomomonas but its distinctness from E. moraniae we here propose the novel species Entomomonas asaccharolytica sp. nov. F2AT (=CCM 9136T=LMG 32211T).

Keywords: Entomomonas asaccharolytica; chemotaxonomy; phylogeny; physiology.

MeSH terms

  • Animals
  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Diaminopimelic Acid / chemistry
  • Fatty Acids / chemistry
  • Gryllidae* / microbiology
  • Nucleic Acid Hybridization
  • Peptidoglycan / chemistry
  • Phospholipids / chemistry
  • Phylogeny*
  • Pseudomonadaceae / classification*
  • Pseudomonadaceae / isolation & purification
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Ubiquinone / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Peptidoglycan
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Ubiquinone
  • Diaminopimelic Acid
  • ubiquinone 8