Minicells from Highly Genome Reduced Escherichia coli: Cytoplasmic and Surface Expression of Recombinant Proteins and Incorporation in the Minicells

ACS Synth Biol. 2021 Oct 15;10(10):2465-2477. doi: 10.1021/acssynbio.1c00375. Epub 2021 Sep 13.

Abstract

Minicells, small cells lacking a chromosome, produced by bacteria with mutated min genes, which control cell division septum placement, have many potential uses. Minicells have contributed to basic bacterial physiology studies and can enable new biotechnological applications, including drug delivery and vaccines. Genome-reduced bacteria are another informative area of investigation. Investigators identified that with even almost 30% of the E. coli genome deleted, the bacteria still live. In biotechnology and synthetic biology, genome-reduced bacteria offer certain advantages. With genome-reduced bacteria, more recombinant genes can be placed into genome-reduced chromosomes and fewer cell resources are devoted to purposes apart from biotechnological goals. Here, we show that these two technologies can be combined: min mutants can be made in genome-reduced E. coli. The minC minD mutant genome-reduced E. coli produce minicells that concentrate engineered recombinant proteins within these spherical delivery systems. We expressed recombinant GFP protein in the cytoplasm of genome-reduced bacteria and showed that it is concentrated within the minicells. We also expressed proteins on the surfaces of minicells made from genome-reduced bacteria using a recombinant Gram-negative AIDA-I autotransporter expression cassette. Some autotransporters, like AIDA-I, are concentrated at the bacterial poles, where minicells bud. Recombinant proteins expressed on surfaces of the genome-reduced bacteria are concentrated on the minicells. Minicells made from genome-reduced bacteria may enable useful biotechnological innovations, such as drug delivery vehicles and vaccine immunogens.

Keywords: antigens; autotransporter; cell engineering; genome reduced bacteria; minicell; recombinant protein expression; vaccines.

Publication types

  • Letter
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Engineering
  • Cell Membrane / metabolism
  • Cytoplasm / metabolism*
  • Escherichia coli / genetics*
  • Escherichia coli Proteins / genetics
  • Genome, Bacterial*
  • Green Fluorescent Proteins / genetics
  • Recombinant Proteins / genetics

Substances

  • Escherichia coli Proteins
  • Recombinant Proteins
  • Green Fluorescent Proteins