Gut microbiota as a driver of the interindividual variability of cardiometabolic effects from tea polyphenols

Crit Rev Food Sci Nutr. 2023;63(11):1500-1526. doi: 10.1080/10408398.2021.1965536. Epub 2021 Sep 13.

Abstract

Tea polyphenols have been extensively studied for their preventive properties against cardiometabolic diseases. Nevertheless, the evidence of these effects from human intervention studies is not always consistent, mainly because of a large interindividual variability. The bioavailability of tea polyphenols is low, and metabolism of tea polyphenols highly depends on individual gut microbiota. The accompanying reciprocal relationship between tea polyphenols and gut microbiota may result in alterations in the cardiometabolic effects, however, the underlying mechanism of which is little explored. This review summarizes tea polyphenols-microbiota interaction and its contribution to interindividual variability in cardiometabolic effects. Currently, only a few bacteria that can biodegrade tea polyphenols have been identified and generated metabolites and their bioactivities in metabolic pathways are not fully elucidated. A deeper understanding of the role of complex interaction necessitates fully individualized data, the ntegration of multiple-omics platforms and development of polyphenol-centered databases. Knowledge of this microbial contribution will enable the functional stratification of individuals in the gut microbiota profile (metabotypes) to clarify interindividual variability in the health effects of tea polyphenols. This could be used to predict individual responses to tea polyphenols consumption, hence bringing us closer to personalized nutrition with optimal dose and additional supplementation of specific microorganisms.

Keywords: Catechins; bioactivity; bioavailability; metabolism; metabotypes; microbial metabolites.

Publication types

  • Review

MeSH terms

  • Cardiovascular Diseases* / prevention & control
  • Gastrointestinal Microbiome*
  • Humans
  • Microbiota*
  • Polyphenols / metabolism
  • Polyphenols / pharmacology
  • Tea / metabolism

Substances

  • Polyphenols
  • Tea