A hybrid feature selection model based on butterfly optimization algorithm: COVID-19 as a case study

Expert Syst. 2022 Mar;39(3):e12786. doi: 10.1111/exsy.12786. Epub 2021 Jul 29.

Abstract

The need to evolve a novel feature selection (FS) approach was motivated by the persistence necessary for a robust FS system, the time-consuming exhaustive search in traditional methods, and the favourable swarming manner in various optimization techniques. Most of the datasets have a high dimension in many issues since all features are not crucial to the problem, which reduces the algorithm's accuracy and efficiency. This article presents a hybrid feature selection approach to solve the low precision and tardy convergence of the butterfly optimization algorithm (BOA). The proposed method is dependent on combining the algorithm of BOA and the particle swarm optimization (PSO) as a search methodology using a wrapper framework. BOA is started with a one-dimensional cubic map in the proposed approach, and a non-linear parameter control technique is also implemented. To boost the basic BOA for global optimization, PSO algorithm is mixed with the butterfly optimization algorithm (BOAPSO). A 25 dataset evaluates the proposed BOAPSO to determine its efficiency with three metrics: classification precision, the selected features, and the computational time. A COVID-19 dataset has been used to evaluate the proposed approach. Compared to the previous approaches, the findings show the supremacy of BOAPSO for enhancing performance precision and minimizing the number of chosen features. Concerning the accuracy, the experimental outcomes demonstrate that the proposed model converges rapidly and performs better than with the PSO, BOA, and GWO with improvement percentages: 91.07%, 87.2%, 87.8%, 87.3%, respectively. Moreover, the proposed model's average selected features are 5.7 compared to the PSO, BOA, and GWO, with average features 22.5, 18.05, and 23.1, respectively.

Keywords: COVID‐19; butterfly optimization algorithm; data classification; feature selection; particle swarm optimization.