Allelic and genotypic frequencies of NAT2, CYP2E1, and AADAC genes in a cohort of Peruvian tuberculosis patients

Mol Genet Genomic Med. 2021 Oct;9(10):e1764. doi: 10.1002/mgg3.1764. Epub 2021 Sep 12.

Abstract

Background: We determined the frequency of genetic polymorphisms in three anti-TB drug metabolic proteins previously reported: N-acetyltransferase 2 (NAT2), cytochrome P450 2E1 (CYP2E1), and arylacetamide deacetylase (AADAC) within a Peruvian population in a cohort of TB patients.

Methods: We genotyped SNPs rs1041983, rs1801280, rs1799929, rs1799930, rs1208, and rs1799931 for NAT2; rs3813867 and rs2031920 for CYP2E1; and rs1803155 for AADAC in 395 participants completed their antituberculosis treatment.

Results: Seventy-four percent of the participants are carriers of slow metabolizer genotypes: NAT2*5, NAT2*6, and NAT2*7, which increase the sensitivity of INH at low doses and increase the risk of drug-induced liver injuries. Sixty-four percent are homozygous for the wild-type CYP2E1*1A allele, which could increase the risk of hepatotoxicity. However, 16% had a NAT2 fast metabolizer phenotype which could increase the risk of acquiring resistance to INH, thereby increasing the risk of multidrug-resistant (MDR) or treatment failure. The frequency of rs1803155 (AADAC*2 allele) was higher (99.9%) in Peruvians than in European American, African American, Japanese, and Korean populations.

Conclusions: This high prevalence of slow metabolizers for isoniazid in the Peruvian population should be further studied and considered to help individualize drug regimens, especially in countries with a great genetic diversity like Peru. These data will help the Peruvian National Tuberculosis Control Program develop new strategies for therapies.

Keywords: AADAC; CYP2E1; NAT2; tuberculosis.

MeSH terms

  • Alleles*
  • Arylamine N-Acetyltransferase / genetics*
  • Carboxylic Ester Hydrolases / genetics*
  • Cytochrome P-450 CYP2E1 / genetics*
  • Gene Frequency*
  • Genetic Association Studies
  • Genetic Predisposition to Disease
  • Genotype
  • Humans
  • Linkage Disequilibrium
  • Peru
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Tuberculosis / etiology*

Substances

  • Cytochrome P-450 CYP2E1
  • Arylamine N-Acetyltransferase
  • NAT2 protein, human
  • AADAC protein, human
  • Carboxylic Ester Hydrolases