Light and Cation-Driven Optical Switch based on a Stilbene-Appended Terpyridine System for the Design of Molecular-Scale Logic Devices

J Phys Chem A. 2021 Sep 23;125(37):8261-8273. doi: 10.1021/acs.jpca.1c06524. Epub 2021 Sep 10.

Abstract

A molecular system comprising a terpyridine moiety capable of coordinating with different cations and a photoswitchable stilbene unit has been utilized here for the fabrication of multiply configurable logic systems. Incorporation of a substituted stilbene unit into the terpyridine motif generates an intraligand charge-transfer-sensitive module whose absorption and emission spectral properties are highly sensitive to light as well as cations. On the basis of the optical response profile of the receptor in the presence of selected cations as well as light of a specific wavelength, we are able to demonstrate multiple Boolean logic functions such as INHIBIT, IMPLICATION, OR, NOR, and NAND, as well as various combinations of them. Of particular interest, we utilized the present system for the construction of security keypad locks and memory devices by maintaining a proper sequence of the stimuli and monitoring either absorption or emission spectral response at a specific wavelength as the output signal. In addition to various Boolean logic functions, the present system has also the ability to mimic fuzzy logic operations for generating an infinite-valued logic scheme depending on its emission spectral responses upon varying the concentration of cationic (Fe2+ and/or Zn2+) and anionic (CN-) inputs.