Genetic diversification of the Kanehira bitterling Acheilognathus rhombeus inferred from mitochondrial DNA, with comments on the phylogenetic relationship with its sister species Acheilognathus barbatulus

J Fish Biol. 2021 Nov;99(5):1677-1695. doi: 10.1111/jfb.14876. Epub 2021 Sep 9.

Abstract

The Kanehira bitterling, Acheilognathus rhombeus, is a freshwater fish, discontinuously distributed in western Japan and the Korean Peninsula. Unusually among bitterling it is an autumn-spawning species and shows developmental diapause. Consequently, the characterization of its evolutionary history is significant not only in the context of the fish assemblage of East Asia, but also for understanding life-history evolution. This study aimed to investigate the phylogeography of A. rhombeus and its sister species Acheilognathus barbatulus, distributed in China, using a mitochondrial analysis of the ND1 gene from 311 samples collected from 50 localities in Japan and continental Asia. Phylogenetic analysis revealed that A. barbatulus is included in A. rhombeus and genetically closer to Japanese A. rhombeus than to Korean A. rhombeus. Divergence of Korean A. rhombeus and A. barbatulus from Japanese A. rhombeus was estimated to be from the late Pliocene (3.44 Mya) and the early Pleistocene (1.98 Mya), respectively. Each event closely coincided with the time of the Japan Sea opening. Japanese A. rhombeus comprised seven lineages: three in Honshu and four in Kyushu. One lineage in central Kyushu was genetically closer to the Honshu lineages than to other lineages in northern Kyushu. Divergence of Japanese lineages was estimated to be from the early to middle Pleistocene (0.55-0.93 Mya), during a period of geological and paleoclimatic change, including volcanic activity. Population expansion in the late Pleistocene (<0.10 Ma) was suggested in many of the lineages, which accords with other freshwater fishes. Biogeographically the ancestral A. rhombeus/A. barbatulus was likely to have repeatedly colonized Japan from the continent through land bridges in the late Pliocene and the early Pleistocene. However, the close genetic relationship between Japanese A. rhombeus and A. barbatulus suggests another possibility, with the second colonization occurring in reverse, from Japan to China. The small genetic distance between them indicates that the colonization occurred later than colonization events of other freshwater fishes, including other bitterling species.

Keywords: anthropogenic introduction; colonization; divergence time; historical demography; molecular clock.

MeSH terms

  • Animals
  • Cypriniformes*
  • DNA, Mitochondrial* / genetics
  • Mitochondria
  • Phylogeny
  • Phylogeography

Substances

  • DNA, Mitochondrial