Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding

Nat Commun. 2021 Sep 7;12(1):5323. doi: 10.1038/s41467-021-25674-5.

Abstract

The role of intestine clock in energy homeostasis remains elusive. Here we show that mice with Bmal1 specifically deleted in the intestine (Bmal1iKO mice) have a normal phenotype on a chow diet. However, on a high-fat diet (HFD), Bmal1iKO mice are protected against development of obesity and related abnormalities such as hyperlipidemia and fatty livers. These metabolic phenotypes are attributed to impaired lipid resynthesis in the intestine and reduced fat secretion. Consistently, wild-type mice fed a HFD during nighttime (with a lower BMAL1 expression) show alleviated obesity compared to mice fed ad libitum. Mechanistic studies uncover that BMAL1 transactivates the Dgat2 gene (encoding the triacylglycerol synthesis enzyme DGAT2) via direct binding to an E-box in the promoter, thereby promoting dietary fat absorption. Supporting these findings, intestinal deficiency of Rev-erbα, a known BMAL1 repressor, enhances dietary fat absorption and exacerbates HFD-induced obesity and comorbidities. Moreover, small-molecule targeting of REV-ERBα/BMAL1 by SR9009 ameliorates HFD-induced obesity in mice. Altogether, intestine clock functions as an accelerator in dietary fat absorption and targeting intestinal BMAL1 may be a promising approach for management of metabolic diseases induced by excess fat intake.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ARNTL Transcription Factors / deficiency
  • ARNTL Transcription Factors / genetics*
  • Animals
  • Circadian Rhythm / genetics*
  • Diacylglycerol O-Acyltransferase / genetics*
  • Diacylglycerol O-Acyltransferase / metabolism
  • Diet, High-Fat / adverse effects
  • Dietary Fats / administration & dosage
  • Dietary Fats / metabolism
  • Fatty Liver / etiology
  • Fatty Liver / genetics*
  • Fatty Liver / metabolism
  • Fatty Liver / prevention & control
  • Gene Expression Regulation
  • Homeostasis / drug effects
  • Homeostasis / genetics
  • Hyperlipidemias / etiology
  • Hyperlipidemias / genetics*
  • Hyperlipidemias / metabolism
  • Hyperlipidemias / prevention & control
  • Intestinal Mucosa / drug effects
  • Intestinal Mucosa / metabolism
  • Lipid Metabolism / drug effects
  • Lipid Metabolism / genetics
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Nuclear Receptor Subfamily 1, Group D, Member 1 / antagonists & inhibitors
  • Nuclear Receptor Subfamily 1, Group D, Member 1 / genetics*
  • Nuclear Receptor Subfamily 1, Group D, Member 1 / metabolism
  • Obesity / etiology
  • Obesity / genetics*
  • Obesity / metabolism
  • Obesity / prevention & control
  • Promoter Regions, Genetic
  • Protein Binding
  • Pyrrolidines / pharmacology
  • Signal Transduction
  • Thiophenes / pharmacology
  • Triglycerides / biosynthesis

Substances

  • ARNTL Transcription Factors
  • Bmal1 protein, mouse
  • Dietary Fats
  • Nr1d1 protein, mouse
  • Nuclear Receptor Subfamily 1, Group D, Member 1
  • Pyrrolidines
  • SR9009
  • Thiophenes
  • Triglycerides
  • DGAT2 protein, mouse
  • Diacylglycerol O-Acyltransferase