N-doped graphitic C3N4 nanosheets decorated with CoP nanoparticles: A highly efficient activator in singlet oxygen dominated visible-light-driven peroxymonosulfate activation for degradation of pharmaceuticals and personal care products

J Hazard Mater. 2021 Aug 15:416:125891. doi: 10.1016/j.jhazmat.2021.125891. Epub 2021 Apr 16.

Abstract

CoP nanoparticle-loaded N-doped graphitic C3N4 nanosheets (CoP/N-g-C3N4) were fabricated via a facile three-step method to degrade pharmaceuticals and personal care products (PPCPs) via a visible-light-driven (VLD) peroxymonosulfate (PMS) activation system. 2 ppm carbamazepine (CBZ) can be removed completely within 10 min by the VLD-PMS system with a kinetic constant of k = 0.29128 min-1, as 25.8 times compared to that under dark conditions (k = 0.01128 min-1). The experimental and theoretical results showed that the doped graphitic N atoms could modulate the electronic properties of the g-C3N4 nanosheets. Subsequently, the Density Functional Theory (DFT) explained that CoP showed preference to bonding with the nitrogen atoms involved in the newly formed N˭N bond, and the Co‒N bond dramatically enhanced the transfer of photo-generated electrons from the N-g-C3N4 nanosheets. Electron paramagnetic resonance (EPR) tests show that singlet oxygen (1O2) plays a leading role in this case. Moreover, PMS molecules are also tended to be absorbed onto the electron-deficient carbon atoms near the newly formed N˭N bonds for PMS reduction, synergistically enhancing the degradation efficiency for CBZ and benzophenone-3 (BZP). The newly established VLD-PMS activation system was shown to treat the actual sewage in Hong Kong sewage treatment plants (STPs) very well. This work supplements the fundamental theory of radical and non-radical pathways in the sulfate radical (SO4•-)-based advanced oxidation process (SR-AOP) for environmental cleanup purposes.

Keywords: CoP/N-g-C(3)N(4); Non-radical way; PMS activation; PPCPs; Visible light.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cosmetics*
  • Graphite*
  • Nanoparticles*
  • Peroxides
  • Pharmaceutical Preparations*
  • Singlet Oxygen

Substances

  • Cosmetics
  • Peroxides
  • Pharmaceutical Preparations
  • Singlet Oxygen
  • peroxymonosulfate
  • Graphite