Synthesis and Characterisation of Luminescent [CrIII 2 L(μ-carboxylato)]3+ Complexes with High-Spin S=3 Ground States (L=N6 S2 donor ligand)

Chemistry. 2021 Oct 25;27(60):14899-14910. doi: 10.1002/chem.202102079. Epub 2021 Oct 6.

Abstract

The synthesis, structure, magnetic, and photophysical properties of two dinuclear, luminescent, mixed-ligand [CrIII 2 L(O2 CR)]3+ complexes (R=CH3 (1), Ph (2)) of a 24-membered binucleating hexa-aza-dithiophenolate macrocycle (L)2- are presented. X-ray crystallographic analysis reveals an edge-sharing bioctahedral N3 Cr(μ-SR)21,3 -O2 CR)CrN3 core structure with μ1,3 -bridging carboxylate groups. A ferromagnetic superexchange interaction between the electron spins of the Cr3+ ions leads to a high-spin (S=3) ground state. The coupling constants (J=+24.2(1) cm-1 (1), +34.8(4) cm-1 (2), H=-2JS1 S2 ) are significantly larger than in related bis-μ-alkoxido-μ-carboxylato structures. DFT calculations performed on both complexes reproduce both the sign and strength of the exchange interactions found experimentally. Frozen methanol-dichloromethane 1 : 1 solutions of 1 and 2 luminesce at 750 nm when excited into the 4 LMCT state on the 4 A22 T12 ) bands (λexc =405 nm). The absolute quantum yields (ΦL ) for 1 and 2 were found to be strongly temperature dependent. At 77 K in frozen MeOH/CH2 Cl2 glasses, ΦL =0.44±0.02 (for 1), ΦL =0.45±0.02 (for 2).

Keywords: crystal structures; dinuclear chromium(III) complexes; luminescence; magnetic properties; thiolato ligand.

Grants and funding