Electrochemical sensor based on Ni-exchanged natural zeolite/carbon black hybrid nanocomposite for determination of vitamin B6

Mikrochim Acta. 2021 Sep 6;188(10):323. doi: 10.1007/s00604-021-04992-x.

Abstract

The utilization of environmentally friendly nanoporous natural zeolite exchanged with Ni2+ ions (NiZ) and conductive carbon black (CB) in the fabrication of a novel and selective voltammetric sensor of vitamin B6 (VB6) is presented. The used clinoptilolite-rich zeolite material and CB were characterized in terms of morphology and textural properties. The superior properties of Ni-zeolite/carbon black modified glassy carbon electrode (NiZCB-GCE), arising from the synergistic effect of combining the unique features of zeolite and conductive carbon black, were confirmed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. In the determination of VB6 with the use of differential pulse voltammetry (DPV), the optimization of the pH value of supporting electrolyte and instrumental parameters, as well as the interference study were performed. Under optimized conditions, the oxidation peak current at the potential +0.72 V vs. Ag | AgCl | 3 M KCl reference electrode was linear to the VB6 concentration in the range 0.050 to 1.0 mg L-1 (0.30-5.9 μmol L-1) (R = 0.9993). The calculated limit of detection (LOD, S/N = 3), equal to 15 μg L-1 (0.09 μmol L-1), was much better compared to chemically modified electrodes with other carbon-based materials. The RSD for 0.5 mg L-1 was in the range 2.5-5.4% (n = 4). The developed NiZCB-GCE was successfully applied to the determination of VB6 in commercially available multivitamin dietary supplements, food, and water samples. The obtained recoveries ranged from 95 to 106%.

Keywords: Carbon black; Dietary supplements; Electrochemical sensor; Hybride nanocomposite; Modified electrode; Natural zeolite; Vitamin B6; Voltammetry.

MeSH terms

  • Dietary Supplements / analysis
  • Electrochemical Techniques / methods*
  • Energy Drinks / analysis
  • Limit of Detection
  • Nanocomposites / chemistry*
  • Nickel / chemistry
  • Porosity
  • Soot / chemistry*
  • Vitamin B 6 / analysis*
  • Wastewater / analysis
  • Zeolites / chemistry*

Substances

  • Soot
  • Waste Water
  • Zeolites
  • Nickel
  • Vitamin B 6