3D Photovoltaic Router of Water Microdroplets Aiming at Free-Space Microfluidic Transportation

ACS Appl Mater Interfaces. 2021 Sep 22;13(37):45018-45032. doi: 10.1021/acsami.1c10940. Epub 2021 Sep 5.

Abstract

So far, microfluidic navigation based on space-charge modulation is limited in a two-dimensional (2D) substrate plane. In this paper, a three-dimensional (3D) photovoltaic water-microdroplet router based on a superhydrophobic LiNbO3:Fe crystal is reported. This router employs the repulsive electrostatic force induced by the positive photovoltaic charges generated under focused laser illumination and permits traveling microdroplets to be routed in both in-plane and out-of-plane ways. By analyzing the dynamic process of microdroplet routing, it is found that the microdroplets can gain positive charges through traveling on a superhydrophobic surface and that the positive photovoltaic charges exert an electrophoretic (EP) force on the microdroplets being charged and make them either routed inside the 2D substrate plane or jump out of the 2D plane through electrostatic ballistic ejection. The laser-illumination and microdroplet-size dependence of the deflecting parameters of the in-plane microdroplet routing as well as the jumping trajectory of the out-of-plane routing are investigated. An electrostatic kinetic model is established for both routing ways, and the simulation based on this model predicts well the experimental dependence. A few examples of cascaded free-space microfluidic transportation using the 3D photovoltaic router are demonstrated, showing the potential of this technique in future biological applications.

Keywords: integrated optics; lithium niobate; microdroplet router; microfluidic transportation; photovoltaic charges.